Ultrafine particles (UFP) associated with air quality and health impacts are a major concern in growing urban regions. Concentrations of UFP (particles of size between 10 and 100 nm) and accumulation mode (Nacc) (particles of size >100 and up to 1000 nm), are analyzed over a highly polluted megacity, Delhi, in conjunction with vehicular flow density, during peak (morning, and evening) and non-peak hours. UFP contributes ≥60% to total particle concentration during autumn and monsoon. UFP concentrations are about 50,000 particles per cm3 in winter which reduces to about 25,000 particles during monsoon. Nacc are about 20,000 (winter) and 10,000 (monsoon) particles per cm3. UFP concentration and Nacc during peak hours are at least twice higher than those obtained in non-peak hours, confirming the dominant influence of emissions from vehicular exhaust in the study region. Seasonal analysis of UFP size distribution reveals that direct emissions dominate the particle concentrations during winter and autumn, whereas new particle formation mechanism contributes the highest in spring and summer. Assessment of inhalable particle number concentration and particle deposition in the human respiratory tract using Multiple Path Particle Dosimetry (MPPD) model, performed for the first time, shows that the order in which these particles deposit in the human respiratory tract is alveoli > bronchiole > bronchus. The deposition ranges between 10 and 18 million nanoparticles during different hours of the day, whereas the estimated inhalable particle concentration (IPN) varies between 0.5 and 1 billion. Results on the IPN during activities classified from light (walking), medium, heavy, very heavy to severe (long-distance running) provide insights into health effects on vulnerable populations. These quantitative results obtained over a megacity on hourly and seasonal variations of nanoparticles along with IPN and deposition rates for different activities are important, and are invaluable inputs for developing mitigation policies aimed to improve air quality and public health, both of which are major concerns in South Asia.
Read full abstract