Abstract

Microplastics (MPs) have been widely detected in agricultural soils, and agricultural activities have been identified as an important factor influencing the abundance of MPs in the air. However, no studies have investigated whether agricultural activities are contributors to airborne MPs in buildings near farms. We collected airborne MP samples using an active sampling method from an elementary school near corn farms during different cultivation stages to assess the impact of agricultural activities on MPs in the study school near farms. Our data showed that the predominant shapes, sizes, colors, and polymer compositions were fragments, 2–50 μm, black or grey, and polyethylene terephthalate, respectively, during all cultivation stages. The highest and lowest MP concentrations were recorded during the land preparation (56.8 ± 7.4 particles/m3, August 2022) and growth (2.5 ± 1.8 particles/m3, February 2022) stages, respectively. A multiple-path particle dosimetry model revealed that the deposition fractions of MPs in humans were highest in the head; the highest and lowest deposition rates and fluxes of MPs in the airway were found during the land preparation and growth stages, respectively. The concentration of MPs did not present a positive correlation with potassium or crustal elemental concentration; however, it did show a positive association with temperature value. Therefore, our data did not show that corn cultivation influences MP concentrations in the study school near corn farms; instead, temperature was an important influencing factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.