The performance of a novel impinging two-phase jet heat sink operating with single and multiple jets is presented and the influence of the following parameters is quantified: (i) thermal load applied on the heat sink and (ii) geometrical arrangement of the orifices (jets). The heat sink is part of a vapor compression cooling system equipped with an R-134a small-scale oil-free linear motor compressor. The evaporator and the expansion device are integrated into a single cooling unit. The expansion device can be a single orifice or an array of orifices responsible for the generation of two-phase jet(s) impinging on a surface where a concentrated heat load is applied. The analysis is based on the thermodynamic performance and steady-state heat transfer parameters associated with the impinging jet(s) for single and multiple orifice tests. The two-phase jet heat sink was capable of dissipating cooling loads of up to 160 W and 200 W from a 6.36 cm2 surface for single and multiple orifice configurations, respectively. For these cases, the temperature of the impingement surface was kept below 40 °C and the average heat transfer coefficient reached values between 14,000 and 16,000 W/(m2 K).