Previous article Next article A Multiple Exchange Algorithm for Multivariate Chebyshev ApproximationG. A. WatsonG. A. Watsonhttps://doi.org/10.1137/0712004PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstractA Remes-type algorithm based on linear programming is presented for computing linear best Chebyshev approximations to multivariate functions. Numerical results are given for some 2-variable examples.[1] R. H. Bartels and , G. H. Golub, The simplex method of linear programming using $LU$ decompo-sition, Comm. ACM, 12 (1969), 266–268 10.1145/362946.362974 0181.19104 CrossrefISIGoogle Scholar[2] L. Bittner, Das Austauschverfahren der linearen Tschebyscheff-Approximation bei nicht erfüllter Haarscher Bedingung, Z. Angew. Math. Mech., 41 (1961), 238–256 MR0175289 0103.28501 CrossrefGoogle Scholar[3] E. W. Cheney, Introduction to approximation theory, McGraw-Hill Book Co., New York, 1966xii+259 MR0222517 0161.25202 Google Scholar[4] J. Descloux, Dégénérescence dans les approximations de Tschebyscheff linéaires et discrètes, Numer. Math., 3 (1961), 180–187 10.1007/BF01386018 MR0134455 0100.33402 CrossrefGoogle Scholar[5] R. Fletcher, , J. A. Grant and , M. D. Hebden, Linear minimax approximation as the limit of best $L\sb{p}$-approximation, SIAM J. Numer. Anal., 11 (1974), 123–136 10.1137/0711013 MR0343535 0284.65004 LinkISIGoogle Scholar[6] Philip E. Gill and , Walter Murray, A numerically stable form of the simplex algorithm, Linear Algebra and Appl., 7 (1973), 99–138 10.1016/0024-3795(73)90047-5 MR0321519 0255.65029 CrossrefGoogle Scholar[7] G. Hadley, Linear programming, Addison-Wesley Series in Industrial Management, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1962xii+520 MR0135622 0102.36304 Google Scholar[8] John C. Mairhuber, On Haar's theorem concerning Chebychev approximation problems having unique solutions, Proc. Amer. Math. Soc., 7 (1956), 609–615 MR0079672 0070.29101 Google Scholar[9] M. R. Osborne and , G. A. Watson, On the best linear Chebyshev approximation, Comput. J., 10 (1967), 172–177 MR0218808 0155.48101 CrossrefISIGoogle Scholar[10] M. R. Osborne and , G. A. Watson, A note on singular minimax approximation problems, J. Math. Anal. Appl., 25 (1969), 692–700 10.1016/0022-247X(69)90266-2 MR0235699 0187.12701 CrossrefISIGoogle Scholar[11] E. Stiefel, Über diskrete und lineare Tschebyscheff-Approximationen, numer. Math., 1 (1959), 1–28 10.1007/BF01386369 MR0107960 0083.11501 CrossrefGoogle Scholar[12] L. Veidinger, On the numerical determination of the best approximations in the Chebyshev sense, Numer. Math., 2 (1960), 99–105 10.1007/BF01386215 MR0139889 0090.33702 CrossrefGoogle Scholar[13] G. A. Watson, The calculation of best restricted approximations, SIAM J. Numer. Anal., 11 (1974), 693–699 10.1137/0711056 MR0388735 0256.65006 LinkISIGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Multivariable quantum signal processing (M-QSP): prophecies of the two-headed oracle20 September 2022 | Quantum, Vol. 6 Cross Ref Membership Function, Time Delay-Dependent $\eta$-Exponential Stabilization of the Positive Discrete-Time Polynomial Fuzzy Model Control SystemIEEE Transactions on Fuzzy Systems, Vol. 30, No. 7 Cross Ref Membership-Function-Dependent Stability Analysis for Polynomial-Fuzzy-Model-Based Control Systems via Chebyshev Membership FunctionsIEEE Transactions on Fuzzy Systems, Vol. 29, No. 11 Cross Ref An Efficient Algorithm for Min-Max Convex Semi-Infinite Programming Problems26 May 2016 | Numerical Functional Analysis and Optimization, Vol. 37, No. 8 Cross Ref A smoothing Levenberg–Marquardt algorithm for semi-infinite programming12 September 2014 | Computational Optimization and Applications, Vol. 60, No. 3 Cross Ref Stability of non-polynomial systems using differential inclusions and polynomial Lyapunov functions Cross Ref A new smoothing Newton-type algorithm for semi-infinite programming1 August 2009 | Journal of Global Optimization, Vol. 47, No. 1 Cross Ref Approximation in normed linear spaces Cross Ref Approximation in normed linear spacesJournal of Computational and Applied Mathematics, Vol. 121, No. 1-2 Cross Ref Chebyshev digital FIR filter designSignal Processing, Vol. 76, No. 1 Cross Ref Numerical Methods for Semi-Infinite Programming: A Survey Cross Ref Optimal design of FIR filters with the complex Chebyshev error criteriaIEEE Transactions on Signal Processing, Vol. 43, No. 3 Cross Ref Discretization methods for the solution of semi-infinite programming problemsJournal of Optimization Theory and Applications, Vol. 71, No. 1 Cross Ref Modifications of the First Remez AlgorithmRembert Reemtsen14 July 2006 | SIAM Journal on Numerical Analysis, Vol. 27, No. 2AbstractPDF (1305 KB)An adaptive differential-correction algorithmJournal of Approximation Theory, Vol. 37, No. 3 Cross Ref A Review of Numerical Methods for Semi-Infinite Optimization Cross Ref A Lagrangian Method for Multivariate Continuous Chebyshev Approximation Problems Cross Ref Chebyshev approximation with non-negative derivativeJournal of Approximation Theory, Vol. 31, No. 2 Cross Ref Bemerkungen zur Fehlerabschätzung bei Linearer Tschebyscheff — Approximation Cross Ref Comparison of algorithms for multivariate rational approximation1 January 1977 | Mathematics of Computation, Vol. 31, No. 138 Cross Ref Computing the strict Chebyshev solution of overdetermined linear equations1 January 1977 | Mathematics of Computation, Vol. 31, No. 140 Cross Ref Linear Chebyshev approximation without Chebyshev setsBIT, Vol. 16, No. 4 Cross Ref Computational Methods in Special Functions-A Survey Cross Ref A stable multiple exchange algorithm for linear sip Cross Ref A comparison of some numerical methods for semi-infinite programming Cross Ref Optimal minimax two-dimensional FIR design using a multiple simplex exchange Cross Ref Volume 12, Issue 1| 1975SIAM Journal on Numerical Analysis History Submitted:26 October 1973Published online:14 July 2006 InformationCopyright © 1975 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0712004Article page range:pp. 46-52ISSN (print):0036-1429ISSN (online):1095-7170Publisher:Society for Industrial and Applied Mathematics
Read full abstract