Collaborative edge intelligence, a distributed computing paradigm, refers to a system where multiple edge devices work together to process data and perform distributed machine learning (DML) tasks locally. Decentralized Internet of Things (IoT) devices share knowledge and resources to improve the quality of service (QoS) of the system with reduced reliance on centralized cloud infrastructure. However, the paradigm is vulnerable to free-riding attacks, where some devices benefit from the collective intelligence without contributing their fair share, potentially disincentivizing collaboration and undermining the system’s effectiveness. Moreover, data collected from heterogeneous IoT devices may contain biased information that decreases the prediction accuracy of DML models. To address these challenges, we propose a novel incentive mechanism that relies on time-dependent blockchain records and multi-access edge computing (MEC). We formulate the QoS problem as an unbounded multiple knapsack problem at the network edge. Furthermore, a decentralized valuation protocol is introduced atop blockchain to incentivize contributors and disincentivize free-riders. To improve model prediction accuracy within latency requirements, a data scheduling algorithm is given based on a curriculum learning framework. Based on our computer simulations using heterogeneous datasets, we identify two critical factors for enhancing the QoS in collaborative edge intelligence systems: (1) mitigating the impact of information loss and free-riders via decentralized data valuation and (2) optimizing the marginal utility of individual data samples by adaptive data scheduling.