Flow around clustered cylinders is widely encountered in engineering applications such as wind energy systems, pipeline transport, and marine engineering. To investigate the hydrodynamic performance and vortex dynamics of multiple cylinders under forced vibration at low Reynolds numbers, with a focus on understanding the interference characteristics in various configurations, this study is based on a self-developed radial basis function iso-surface ghost cell computing platform, which improves the implicit iso-surface interface representation method to track the moving boundaries of multiple cylinders, and employs a self-constructed CPU/GPU heterogeneous parallel acceleration technique for efficient numerical simulations. This study systematically investigates the interference characteristics of multiple cylinder configurations across various parameter domains, including spacing ratios, geometric arrangements, and oscillation modes. A quantitative analysis of key parameters, such as aerodynamic coefficients, dimensionless frequency characteristics, and vorticity field evolution, is performed. This study reveals that, for a dual-cylinder system, there exists a critical gap ratio between X/D = 2.5 and 3, which leads to an increase in the lift and drag coefficients of both cylinders, a reduction in the vortex shedding periodicity, and a disruption of the wake structure. For a three-cylinder system, the lift and drag coefficients of the two upstream cylinders decrease with increasing spacing. On the other hand, this increased spacing results in a rise in the drag of the downstream cylinder. In the case of a four-cylinder system, the drag coefficients of the cylinders located on either side of the flow direction are relatively high. A significant increase in the lift coefficient occurs when the spacing ratio is less than 2.0, while the drag coefficient of the downstream cylinder is minimized. The findings establish a comprehensive theoretical framework for the optimal configuration design and structural optimization of multicylinder systems, while also providing practical guidelines for engineering applications.
Read full abstract