The temperature dependence of thermal conductivity and specific heat for detonated nanodiamond ceramics is investigated on specially designed experimental setups, implementing the uniaxial stationary heat flow method and the thermal relaxation method, respectively. Additionally, complementary studies with a commercial setup (Physical Property Measurement System from Quantum Design operating either in Thermal Transport or Heat Capacity Option) were performed. Two types of samples are under consideration. Both ceramics were sintered at high pressures (6–7 GPa) for 11–25 s but at different sintering temperatures, namely 1000 °C and 1600 °C. The effect of changing the sintering conditions on thermal transport is examined. In thermal conductivity κ(T), it provides an improvement up to a factor of 3 of heat flow at room temperature. The temperature dependence of κ(T) exhibits a typical polycrystalline character due to hindered thermal transport stemming from the microstructure of ceramic material but with values around 1–2 W/mK. At the lowest temperatures, the thermal conductivity is very low and increases only slightly faster than linear with temperature, proving the significant contribution of the scattering due to multiple grain boundaries. The specific heat data did not show a substantial difference between detonated nanodiamond ceramics obtained at different temperatures unlike for κ(T) results. For both samples, an unexpected upturn at the lowest temperatures is observed—most likely reminiscent of a low-T Schottky anomaly. A linear contribution to the specific heat is also present, with a value one order of magnitude higher than in canonical glasses. The determined Debye temperature is 482 (±6) K. The results are supported by phonon mean free path calculations.
Read full abstract