Multi-granulation decision-theoretic rough sets uses the granular structures induced by multiple binary relations to approximate the target concept, which can get a more accurate description of the approximate space. However, Multi-granulation decision-theoretic rough sets is very time-consuming to calculate the approximate value of the target set. Local rough sets not only inherits the advantages of classical rough set in dealing with imprecise, fuzzy and uncertain data, but also breaks through the limitation that classical rough set needs a lot of labeled data. In this paper, in order to make full use of the advantage of computational efficiency of local rough sets and the ability of more accurate approximation space description of multi-granulation decision-theoretic rough sets, we propose to combine the local rough sets and the multigranulation decision-theoretic rough sets in the covering approximation space to obtain the local multigranulation covering decision-theoretic rough sets model. This provides an effective tool for discovering knowledge and making decisions in relation to large data sets. We first propose four types of local multigranulation covering decision-theoretic rough sets models in covering approximation space, where a target concept is approximated by employing the maximal or minimal descriptors of objects. Moreover, some important properties and decision rules are studied. Meanwhile, we explore the reduction among the four types of models. Furthermore, we discuss the relationships of the proposed models and other representative models. Finally, illustrative case of medical diagnosis is given to explain and evaluate the advantage of local multigranulation covering decision-theoretic rough sets model.