We fabricate Josephson field-effect-transistors in germanium quantum wells contacted by superconducting aluminum and demonstrate supercurrents carried by holes that extend over junction lengths of several micrometers. In superconducting quantum point contacts we observe discretization of supercurrent, as well as Fabry-Perot resonances, demonstrating ballistic transport. The magnetic field dependence of the supercurrent follows a clear Fraunhofer-like pattern and Shapiro steps appear upon microwave irradiation. Multiple Andreev reflections give rise to conductance enhancement and evidence a transparent interface, confirmed by analyzing the excess current. These demonstrations of ballistic superconducting transport are promising for hybrid quantum technology in germanium.