The Internet of Modular Robot Things (IoMRT) has emerged through the integration of robotic systems into the Internet of Things (IoT), offering a wide range of solutions to meet continuously growing demands. Six self-reconfiguration functionalities/criteria have been proposed for developing IoMRT. However, no study has fully developed an IoMRT that satisfies all the necessary functionalities. Additionally, there is a lack of scholarly research proposing a decision-based approach for evaluating and ranking IoMRT, which highlights a significant research gap. A complex multiple-criteria decision-making (MCDM) problem has arisen in evaluating and ranking IoMRT due to the diversity of functionalities, the need to prioritize these functionalities based on their importance, and data variability. To address this issue, the study proposes a novel decision-based approach for evaluating and ranking IoMRT, which consists of three phases: (i) Developing a novel weighting method called T2PFS-FWZICbIP (Type-2 Pythagorean Fuzzy Set–Fuzzy Weighted Zero Inconsistency based on Interrelationship Process) to measure the importance of the identified functionalities; (ii) Formulating a decision matrix by cross-referencing potential IoMRT developments with the six self-reconfiguration functionalities resulted in the selection of a random sample of 50 IoMRTs as proof of concept. Following this, the DLbU (Dynamic Localization-based Utility) method was proposed, integrating dynamic localization and utility procedures to manage binary data within the decision matrix; (iii) Developing a novel ranking method, T2PFS-DNMA (Type-2 Pythagorean Fuzzy Set–Double Normalization-based Multiple Aggregation), to address the diversity of functionalities and concerns regarding data variance. The results revealed that the Distributed functionality (C1) received the highest weight value of 0.4060 according to T2PFS-FWZICbIP, indicating its high importance in the ranking of IoMRT. In contrast, the High-Fidelity functionality (C5) received a weight value of 0.0733, indicating its very low importance in the ranking. IoMRT2 and IoMRT35 were identified as the most and least favored, respectively, according to T2PFS-DNMA. The robustness of the proposed approach was assessed through sensitivity analysis and comparative studies.
Read full abstract