In this review, we present the most recent and relevant research that has been done regarding the fabrication of 3D micro/nanostructures for tissue engineering applications. First, we make an overview of 3D micro/nanostructures that act as backbone constructs where the seeded cells can attach, proliferate and differentiate towards the formation of new tissue. Then, we describe the fabrication of 3D micro/nanostructures that are able to control the cellular processes leading to faster tissue regeneration, by actuation using topographical, mechanical, chemical, electric or magnetic stimuli. An in-depth analysis of the actuation of the 3D micro/nanostructures using each of the above-mentioned stimuli for controlling the behavior of the seeded cells is provided. For each type of stimulus, a particular recent application is presented and discussed, such as controlling the cell proliferation and avoiding the formation of a necrotic core (topographic stimulation), controlling the cell adhesion (nanostructuring), supporting the cell differentiation via nuclei deformation (mechanical stimulation), improving the osteogenesis (chemical and magnetic stimulation), controlled drug-delivery systems (electric stimulation) and fastening tissue formation (magnetic stimulation). The existing techniques used for the fabrication of such stimuli-actuated 3D micro/nanostructures, are briefly summarized. Special attention is dedicated to structures' fabrication using laser-assisted technologies. The performances of stimuli-actuated 3D micro/nanostructures fabricated by laser-direct writing via two-photon polymerization are particularly emphasized.