We report on sensitive tunable laser absorption spectroscopy using a multipass gas cell and a solid-state photoacoustic optical power detector. Unlike photoacoustic spectroscopy (PAS), this method readily allows a low gas pressure for high spectral selectivity and a free gas flow for continuous measurements. Our photoacoustic optical power detector has a large linear dynamic range and can be used at almost any optical wavelength, including the middle infrared and THz regions that are challenging to cover with traditional optical detectors. Furthermore, our approach allows for compensation of laser power drifts with a single detector. As a proof of concept, we have measured very weak CO2 absorption lines at 9.2 µm wavelength and achieved a normalized noise equivalent absorption (NNEA) of 2.35·10−9 Wcm−1Hz−1/2 with a low-power quantum cascade laser. The absolute value of the gas absorption coefficient is obtained directly from the Beer-Lambert law, making the technique calibration-free.
Read full abstract