Abstract

Early diagnosis is crucial for effective treatment of socially significant diseases, such as type 1 diabetes mellitus (T1DM), pneumonia, and asthma. This study employs a diagnostic method based on infrared laser spectroscopy of human exhaled breath. The experimental setup comprises a quantum cascade laser, which emits in a pulsed mode with a peak power of up to 150 mW in the spectral range of 5.3-12.8 μm (780-1890 cm-1), and a Herriott multipass gas cell with a specific optical path length of 76 m. Using this setup, spectra of exhaled breath in the mid-infrared range were obtained from 165 volunteers, including healthy individuals, patients with T1DM, asthma, and pneumonia. The study proposes a hybrid approach for classifying these spectra, utilizing a variational autoencoder for dimensionality reduction and a support vector machine method for classification. The results demonstrate that the proposed hybrid approach outperforms other machine learning method combinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.