The study explores the role of multimodal imaging techniques, such as [18F]F-PSMA-1007 PET/CT and multiparametric MRI (mpMRI), in predicting the ISUP (International Society of Urological Pathology) grading of prostate cancer. The goal is to enhance diagnostic accuracy and improve clinical decision-making by integrating these advanced imaging modalities with clinical variables. In particular, the study investigates the application of few-shot learning to address the challenge of limited data in prostate cancer imaging, which is often a common issue in medical research. This study conducted a retrospective analysis of 341 prostate cancer patients enrolled between 2019 and 2023, with data collected from five imaging modalities: [18F]F-PSMA-1007 PET, CT, Diffusion Weighted Imaging (DWI), T2 Weighted Imaging (T2WI), and Apparent Diffusion Coefficient (ADC). The study compared the performance of five single-modality data sets, PET/CT dual-modality fusion data, mpMRI tri-modality fusion data, and five-modality fusion data within deep learning networks, analyzing how different modalities impact the accuracy of ISUP grading prediction. To address the issue of limited data, a few-shot deep learning network was employed, enabling training and cross-validation with only a small set of labeled samples. Additionally, the results were compared with those from preoperative biopsies and clinical prediction models to further assess the reliability of the experimental findings. The experimental results demonstrate that the multimodal model (combining [18F]F-PSMA-1007 PET/CT and multiparametric MRI) significantly outperforms other models in predicting ISUP grading of prostate cancer. Meanwhile, both the PET/CT dual-modality and mpMRI tri-modality models outperform the single-modality model, with comparable performance between the two multimodal models. Furthermore, the experimental data confirm that the few-shot learning network introduced in this study provides reliable predictions, even with limited data. This study highlights the potential of applying multimodal imaging techniques (such as PET/CT and mpMRI) in predicting ISUP grading of prostate cancer. The findings suggest that this integrated approach can enhance the accuracy of prostate cancer diagnosis and contribute to more personalized treatment planning. Furthermore, incorporating few-shot learning into the model development process allows for more robust predictions despite limited data, making this approach highly valuable in clinical settings with sparse data.
Read full abstract