The landscape of applications and subroutines relying on shortest path computations continues to grow steadily. This growth is driven by the undeniable success of shortest path algorithms in theory and practice. It also introduces new challenges as the models and assessing the optimality of paths become more complicated. Hence, multiple recent publications in the field adapt existing labeling methods in an ad hoc fashion to their specific problem variant without considering the underlying general structure: they always deal with multi-criteria scenarios, and those criteria define different partial orders on the paths. In this paper, we introduce the partial order shortest path problem (POSP), a generalization of the multi-objective shortest path problem (MOSP) and in turn also of the classical shortest path problem. POSP captures the particular structure of many shortest path applications as special cases. In this generality, we study optimality conditions or the lack of them, depending on the objective functions’ properties. Our final contribution is a big lookup table summarizing our findings and providing the reader with an easy way to choose among the most recent multi-criteria shortest path algorithms depending on their problems’ weight structure. Examples range from time-dependent shortest path bottleneck path problems to the electric vehicle shortest path problem with recharging and complex financial weight functions studied in the public transportation community. Our results hold for general digraphs and, therefore, surpass previous generalizations that were limited to acyclic graphs.