Abstract

Multiobjective shortest path problems are computationally harder than single objective ones. In particular, execution time is an important limiting factor in exact multiobjective search algorithms. This paper explores the possibility of improving search performance in those cases where the interesting portion of the Pareto front can be initially bounded. We introduce a new exact label-setting algorithm that returns the subset of Pareto optimal paths that satisfy a set of lexicographic goals, or the subset that minimizes deviation from goals if these cannot be fully satisfied. Formal proofs on the correctness of the algorithm are provided. We also show that the algorithm always explores a subset of the labels explored by a full Pareto search. The algorithm is evaluated over a set of problems with three objectives, showing a performance improvement of up to several orders of magnitude as goals become more restrictive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.