A Cable-supported pipe system (CSPS) is a composite system of structure involving truss modules and cable to support a pipeline over a large space. The structure is crucial in the transportation of fluid. This paper proposes structural design optimization method using response surface method (RSM) and investigates the results of Multi-Objective Genetic Algorithm and Screening design optimization of the structure. The RSM is implemented using deterministic inputs of the verified experimental results with the aid of genetic aggregation response surface in ANSYS Design Exploration platform. The results of performance response of the loaded CSPS structure considering the uncertainty of the design parameters, including the cross-sectional area of the cable truss, and pipe members were subsequently mined. This revealed that the cable sections and truss modules can effectively and efficiently improve the performance of the structure. The outcome also shows that performance the structure is robust. A set of "Pareto optimum solutions' ' were thus obtained based on the constraints of the design optimization, the yield stress of material properties and limit displacement of the structure. The results illustrate that the proposed optimization method provides a set of Pareto optimum solutions and guide for the robust design of the structure.
Read full abstract