This study addresses a shuffled frog leaping algorithm for solving the multi-objective reactive power dispatch problem in a power system. Optimal Reactive Power Dispatch (ORPD) is formulated as a nonlinear, multi-modal and mixed-variable problem. The intended technique is based on the minimization of the real power loss, minimization of voltage deviation and maximization of the voltage stability margin. Generator voltages, capacitor banks and tap positions of tap changing transformers are used as optimization variables of this problem. A memetic meta-heuristic named as shuffled frog-leaping algorithm is intended to solve multi-objective optimal reactive power dispatch problems considering voltage stability margin and voltage deviation. The Shuffled Frog-Leaping Algorithm (SFLA) is a population-based cooperative search metaphor inspired by natural memetics. The algorithm contains elements of local search and global information exchange. The most important benefit of this algorithm is higher speed of convergence to a better solution. The intended method is applied to ORPD problem on IEEE 57 bus power systems and compared with two versions of differential evolutionary algorithm. The simulation results show the effectiveness of the intended method.