Recent studies focusing on neural activity captured by neuroimaging modalities have provided various metrics for elucidating the functional networks and dynamics of the entire brain. Functional magnetic resonance imaging (fMRI) can depict spatiotemporal functional neural networks and dynamic characteristics due to its excellent spatial resolution. However, its temporal resolution is limited. Neuroimaging modalities such as electroencephalography (EEG) and magnetoencephalography (MEG), which have higher temporal resolutions, are utilized for multi-temporal scale and multi-frequency-band analyzes. With this advantage, numerous EEG/MEG-bases studies have revealed the frequency-band specific functional networks involving dynamic functional connectivity and multiple temporal-scale time-series patterns of neural activity. In addition to analyzing neural data, the examination of behavioral data can unveil additional aspects of brain activity through unimodal and multimodal data analyzes performed using appropriate integration techniques. Among the behavioral data assessments, pupillometry can provide comprehensive spatial-temporal-specific features of neural activity. In this perspective, we summarize the recent progress in the development of metrics for analyzing neural data obtained from neuroimaging modalities such as fMRI, EEG, and MEG, as well as behavioral data, with a special focus on pupillometry data. First, we review the typical metrics of neural activity, emphasizing functional connectivity, complexity, dynamic functional connectivity, and dynamic state transitions of whole-brain activity. Second, we examine the metrics related to the time-series data of pupillary diameters and discuss the possibility of multimodal metrics that combine neural and pupillometry data. Finally, we discuss future perspectives on these multiple and multimodal metrics.
Read full abstract