BackgroundAn osteon consists of a multi-layered bone matrix and interstitial fluid flow in the lacunar–canalicular system. Loading-induced interstitial fluid flow in the lacunar–canalicular system is critical for osteocyte mechanotransduction and bone remodelling.MethodsTo investigate the effects of the lamellar structure and heterogeneous material properties of the osteon on the distributions of interstitial fluid flow and seepage velocity, an osteon is idealized as a hollow two-dimensional poroelastic multi-layered slab model subjected to cyclic loading. Based on poroelastic theory, the analytical solutions of interstitial fluid pressure and seepage velocity in lacunar–canalicular pores were obtained.ResultsThe results show that strain magnitude has a greater influence on interstitial fluid pressure than loading frequency. Interestingly, the heterogeneous distribution of permeability produces remarkable variations in interstitial fluid pressure and seepage velocity in the cross-section of cortical bone. In addition, interstitial fluid flow stimuli to osteocytes are mostly controlled by the value of permeability at the surface of the osteon rather than at the inner wall of the osteon.ConclusionInterstitial fluid flow induced by cycling loading stimuli to an osteocyte housed in a lacunar–canalicular pore is not only correlated with strain amplitude and loading frequency, but also closely correlated with the spatial gradient distribution of permeability. This model can help us better understand the fluid flow stimuli to osteocytes during bone remodelling.
Read full abstract