The paper is focused on the application of Long Short-Term Memory (LSTM) neural network enabling patient health status prediction focusing the attention on diabetes. The proposed topic is an upgrade of a Multi-Layer Perceptron (MLP) algorithm that can be fully embedded into an Enterprise Resource Planning (ERP) platform. The LSTM approach is applied for multi-attribute data processing and it is integrated into an information system based on patient management. To validate the proposed model, we have adopted a typical dataset used in the literature for data mining model testing. The study is focused on the procedure to follow for a correct LSTM data analysis by using artificial records (LSTM-AR-), improving the training dataset stability and test accuracy if compared with traditional MLP and LSTM approaches. The increase of the artificial data is important for all cases where only a few data of the training dataset are available, as for more practical cases. The paper represents a practical application about the LSTM approach into the decision support systems (DSSs) suitable for homecare assistance and for de-hospitalization processes. The paper goal is mainly to provide guidelines for the application of LSTM neural network in type I and II diabetes prediction adopting automatic procedures. A percentage improvement of test set accuracy of 6.5% has been observed by applying the LSTM-AR- approach, comparing results with up-to-date MLP works. The LSTM-AR- neural network can be applied as an alternative approach for all homecare platforms where not enough training sequential dataset is available.