Multifunctional materials with both antibacterial and antioxidant properties are highly desired in many scientific applications. The combination of polysaccharide and multi-chamber nanostructures offers a novel perspective for developing antibacterial and antioxidant nanomaterials. In this study, a new kind of tri-chamber eccentric Janus nanostructures (TEJNs) was fabricated through a single-step and straight forward tri-fluid side-by-side electrospinning. The all-in-one TEJNs contained an outer chitosan (CS) chamber, a middle and an inner ethylcellulose (EC)-based chamber loaded with curcumin (Cur) and vitamin E (VE), respectively. The side-by-side multiple-fluid electrospinning processes were implemented robustly and continuously based on a homemade spinneret. Transmission electron microscope and scanning electron microscope evaluations demonstrated the tri-chamber inner structures of TEJNs and the linear morphologies, respectively. The Fourier transform infrared and X-ray diffraction results verified that the components were compatible and coexisted in an amorphous state. In vitro dissolution tests indicated that the TEJNs could provide a sustained release of 90 % of the loaded Cur and VE for 34.30 h and 24.86 h, respectively. Antibacterial and antioxidant experiments demonstrated that the TEJNs were able to provide enhanced antibacterial and antioxidant effects compared to the traditional electrospun homogeneous nanofibers. In the future, the Janus nanofibers can be further developed for several human health applications, such as wound dressings, active food packaging membranes, dental implants and cosmetic films.
Read full abstract