The straight head disease of rice is one of the main problems limiting rice production. Arsenic (As) methylation in paddy soils is considered to be highly related to the occurrence of the straight head disease. As a typical field practice, rice fields are usually drained during the late tillering stage and the mid-late grain filling stage. Nevertheless, the key influencing factors on the As methylation efficiency during paddy soil drying remain unclear. In this study, an indoor cultivation experiment was set up to simulate the drying process of paddy soil. Two As-contaminated soils collected from Xingren (XR) in Guizhou province and Nandan (ND) in Guangxi province were used as test soils. Each soil was treated with the addition of rice straw (RS) and without rice straw (CK). With the drying of paddy soil (0, 24, 36, 48, and 60 h), the changes in soil Eh, pH, total organic carbon (TOC), and As chemical species in the porewater were determined. The abundance of the As methylation functional gene (arsM), sulfate-reducing bacteria (harboring dsrA, As methylation-related microorganism), and methanogens (harboring mcrA, As demethylation-related microorganism), as well as the diversity of arsM-harboring microorganisms, were also observed. The results showed that during the process of drying paddy soil, soil Eh changed from -300--200 mV under complete flooding to -150--50 mV after drying; however, the change in soil pH was not obvious. The concentrations of inorganic As (iAs) and dimethylarsenic (DMAs) in porewater significantly increased (P<0.05) with the drying process. Additionally, the concentration of DMAs in the RS treatment was prominently higher than that in CK. Compared with XR soil, the concentration of DMAs in ND soil was higher. As a function of soil drying time, the As methylation efficiency of XR soil (XR-CK and XR-RS) slightly increased but was not significant (P>0.05), whereas the As methylation efficiency of ND soil (ND-CK and ND-RS) increased significantly (P<0.05). After the drying time reached 60 h, the As methylation efficiency of ND-CK and ND-RS increased by 61.8% and 23.2%, respectively, compared with those at the early stage of drying (0 hours). The copy numbers of the arsM and dsrA genes greatly increased with the extension of drying time, whereas an opposite trend was observed for the copy number of the mcrA gene. Furthermore, the addition of straw obviously increased the gene abundance of whole bacteria and arsM-, dsrA-, and mcrA-harboring bacteria. Based on the multi-factor analysis of variance and the redundancy analysis, it was found that the test soil type, straw addition, drying time, and their interaction had a critical influence on the changes in As species, As methylation efficiency, and the gene abundance in soils. TOC, Eh, and the functional genes associated with As methylation were positively linked with the methylated As content in soil porewater but negatively correlated with that of iAs. According to the sequence of the arsM-harboring microbe, it was clearly demonstrated that a community shift of As-methylating microbe occurred with the soil drying. Here, the following conclusions were derived:① the drying process did not lower the As methylation efficiency in paddy soil. On the contrary, in this study, the As methylation efficiency, especially that for ND soil, remarkably improved. The addition of straw notably promoted the As methylation efficiency and the content of DMAs in porewater. ② An increasing tendency was observed for the abundance of microbes related to As methylation, whereas a reverse trend was indicated for microbes related to As demethylation. The community shift of arsM-harboring microbes might be the crucial reason for the improved As methylation efficiency during the soil drying. These observations contribute to a better understanding of the As methylation process during paddy soil drying and will shed light on the future mitigation of rice straight head disease in paddy soils.