This work investigates how the configuration of the geometric parameters of a radial crystallizer influences the results of the crystallization of lovastatin by antisolvent and using a multi-scale computational fluid dynamics (CFD) model. The OPENFOAM open-source software uses macro and micromixing expressions for flow, and complete energy and population equilibrium equations during nucleation and crystal growth. The model is based on the Reynolds-Averaged-Navier-Stokes (RANS) equation, along with a multi-environment probability density function (PDF) model and the spatially semi-discretized population equilibrium equation, operating a high-resolution finite volume method. The variation crystallizer construction parameters provided another crystallizer design, and analyses demonstrated improved performance and effects on crystal distribution.