Multidrug resistance (MDR) is a major challenge in cancer research. Collateral sensitizers, compounds that exploit the enhanced defense mechanisms of MDR cells as weaknesses, are a proposed strategy to overcome MDR. Our previous work reported the synthesis of two novel Isoquinolinequinone (IQQ) N-oxides that induce collateral sensitivity in MDR ABCB1-overexpressing non-small cell lung cancer (NSCLC) and colorectal cancer cells. Herein, we aimed to investigate underlying mechanisms of antitumor and collateral sensitivity activity of these compounds. We evaluated their effect on cancer cell viability, proliferation, cell cycle profile, and studied their cytotoxicity in non-tumorigenic cells. Their antitumor effect was further studied using NSCLC and colorectal cancer MDR spheroids. To understand underlying collateral sensitivity mechanisms, we assessed the effect on rhodamine-123 accumulation, ROS production, GSH/GSSG balance and expression of key proteins associated with metabolism and redox balance. Both compounds reduced the viability of MDR cells, as 2D cultures or as spheroids, without decreasing the growth of a human nontumorigenic cell line, and increased rhodamine-123 accumulation in MDR NCI-H460/R cells. Moreover, RK2 increased ROS, disrupted GSH balance, and altered expression of proteins associated with oxidative stress protection, particularly in NCI-H460/R cells. The collateral sensitivity effect of RK3 could not be attributed to redox balance disruption, but increased IDH1 expression following treatment suggests a potential metabolic shift in MDR cells. These findings highlight RK2 and RK3 as promising candidates for next stages of drug development. Their distinct mechanisms of action could lead to therapeutic solutions for MDR-related cancers, specifically linked to ABCB1 overexpression.
Read full abstract