Objective.Electroencephalogram (EEG) signals exhibit temporal-frequency-spatial multi-domain feature, and due to the nonplanar nature of the brain surface, the electrode distributions follow non-Euclidean topology. To fully resolve the EEG signals, this study proposes a temporal-frequency-spatial multi-domain feature fusion graph attention network (GAT) for motor imagery (MI) intention recognition in spinal cord injury (SCI) patients.Approach.The proposed model uses phase-locked value (PLV) to extract spatial phase connectivity information between EEG channels and continuous wavelet transform to extract valid EEG information in the time-frequency domain. It then models as a graph data structure containing multi-domain information. The gated recurrent unit and GAT learn EEG's dynamic temporal-spatial information. Finally, the fully connected layer outputs the MI intention recognition results.Main results.After 10 times 10-fold cross-validation, the proposed model can achieve an average accuracy of 95.82%. Furthermore, this study analyses the event-related desynchronization/event-related synchronization and PLV brain network to explore the brain activity of SCI patients during MI.Significance.This study confirms the potential of the proposed model in terms of EEG decoding performance and provides a reference for the mechanism of neural activity in SCI patients.
Read full abstract