This paper focuses on the multidirectional associative memory (MAM) neural networks with <i >m</i> fields which is more advanced to realize associative memory. Based on the Brouwer fixed point theorem and Dini upper right derivative, it is confirmed that the multidirectional associative memory neural network can have <svg style="vertical-align:-0.1638pt;width:12.1125px;" id="M1" height="16.9625" version="1.1" viewBox="0 0 12.1125 16.9625" width="12.1125" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,16.7)"><path id="x33" d="M285 378v-2q65 -13 102 -54.5t37 -97.5q0 -57 -30.5 -104.5t-74 -75t-85.5 -42t-72 -14.5q-31 0 -59.5 11t-40.5 23q-19 18 -16 36q1 16 23 33q13 10 24 0q58 -51 124 -51q55 0 88 40t33 112q0 64 -39 96.5t-88 32.5q-29 0 -64 -11l-6 29q77 25 118 57.5t41 84.5
q0 45 -26.5 69.5t-68.5 24.5q-67 0 -120 -79l-20 20l43 63q51 56 127 56h1q66 0 107 -37t41 -95q0 -42 -31 -71q-22 -23 -68 -54z" /></g> <g transform="matrix(.012,-0,0,-.012,8.225,8.537)"><path id="x1D459" d="M238 681l-124 -585q-7 -31 4 -31q10 0 37.5 18.5t49.5 41.5l16 -22q-40 -48 -89.5 -81.5t-76.5 -33.5q-42 0 -16 122l105 488q7 32 0 41t-39 9h-35l5 26q35 3 71 13t58 17.5t26 7.5q14 0 8 -31z" /></g> </svg> equilibria and <svg style="vertical-align:-0.0pt;width:12.1125px;" id="M2" height="16.75" version="1.1" viewBox="0 0 12.1125 16.75" width="12.1125" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,16.7)"><path id="x32" d="M412 140l28 -9q0 -2 -35 -131h-373v23q112 112 161 170q59 70 92 127t33 115q0 63 -31 98t-86 35q-75 0 -137 -93l-22 20l57 81q55 59 135 59q69 0 118.5 -46.5t49.5 -122.5q0 -62 -29.5 -114t-102.5 -130l-141 -149h186q42 0 58.5 10.5t38.5 56.5z" /></g> <g transform="matrix(.012,-0,0,-.012,8.225,8.538)"><use xlink:href="#x1D459"/></g> </svg> equilibria of them are stable, where <i >l</i> is a parameter associated with the number of neurons. Furthermore, an example is given to illustrate the effectiveness of the results.
Read full abstract