The existing approaches of multicriteria decision-making (MCDM) process might yield unreliable and questionable results. The notable challenges of MCDM approaches are rank reversal paradox and uncertainty. The prime inspiration for researchers is the MCDM for hesitant fuzzy sets (HFSs). In some scenarios, the decision-makers could not choose one from numerous values while expressing their preferences. HFS which is the extension of fuzzy sets (FS) is found to be helpful in solving such decision-making (DM) problems. The DM process is revolutionized with the commencement of powerful and efficient tools of data representation for expressing vagueness and uncertainty in data sets as FSs (both generalized and hesitant ones). This paper copes with one such novel approach that involves entropy-based attribute weighting, followed by an evaluation of approximate sets in the fuzzy rough framework. Correlation of the input alternatives in respect of evaluation criteria and the output class is evaluated. With the fuzzy technique for ordered preference by similarity to ideal solutions (FTOPSIS), the generated correlation matrix is utilized for calculating the degree of closeness ( delta ) of the output classes to the input alternatives. This paper made a novel contribution of performance indicator centered on FTOPSIS for the hesitant fuzzy rough domain. The proposed method’s efficiency is established through comprehensive and systematic experimentation on datasets utilized by researchers globally. The proposed algorithms prove its ability to handle datasets that involve human-like hesitant thinking in the MCDM system by contrasting with the existing ones.