Recently, there has been extensive research on resource allocation schemes for multicast services that would satisfy the requirements of multimedia traffic. Although several schemes have been proposed to improve the performance of individual multicast groups, it is not easy to achieve both throughput efficiency and user fairness. In this study, we propose a new multicast scheduling scheme for achieving proportional fair (PF) allocation in wireless cellular systems. The basic idea of PF is to schedule the user whose corresponding instantaneous channel quality is the highest relative to the average channel condition over a given time scale. We first extend the PF metric to the extent that the scheduler can reflect the user's varying channel gain, and fairness, not only in the unicast case, but also in multicast transmissions. A multicast PF scheme maximizes the summation of the logarithmic average rate of all multicasting users. Thus, it improves the fairness to mobile users when compared to max-rate allocation, because the logarithmic rate gives more weight to lower rate users, while achieving high throughput. Moreover, the proposed scheme is less complex than max-rate allocation.