BackgroundThe oxidative- and osmoregulatory stress-inducing potential of binary mixtures of sulfoxaflor (SUL), a recently developed sulfoximine insecticide, and Zn2+ was aimed to evaluate in Daphnia magna with different exposure regimes. MethodsAnimals were exposed to different SUL concentrations (1.25, 2.5, 10, and 25 mg/L) for 7 days. In vivo 48 h and in vitro effects of single and binary mixtures of SUL (25 and 50 mg/L) and Zn2+ (40 µg/L) were also determined. Furthermore, Ca2+-ATPase, oxidative stress biomarkers (catalase, CAT; superoxide dismutase, SOD; glutathione peroxidase, GPX; glutathione S-transferase, GST; reduced glutathione, GSH; thiobarbituric acid reactive substances, TBARS), and morphometric characteristics were measured. ResultsVariable response patterns were observed due to exposure duration and regime, toxicant type, and concentration. Marked effects of SUL were observed, especially in subacute exposure, and 25 mg/L SUL concentration can be considered as a threshold level. Stimulation of GST activity was the most typical response, followed by declined SOD activity and GSH levels. GPX activity and TBARS levels responded differently depending upon the exposure type. Subacute and in vitro effects of SUL and Zn2+ produced similar responses except for some cases. Ca2+-ATPase activity was altered differently upon subchronic duration, though inhibited by in vitro SUL+Zn effect. Subchronic SUL exposure increased body weight and length up to 25 mg/L, contrary to the observed decrease at higher concentrations. ConclusionsSingle and binary mixtures of SUL and Zn2+ caused damage to the antioxidant and osmoregulatory system due to their oxidative potential on cellular targets (biomarkers). The current data emphasized that investigating the SUL toxicity with the Zn2+ combination based on the multi-biomarker approach is essential in the realistic evaluation of SUL toxicity in toxicological research.
Read full abstract