Synthetic aperture radar (SAR) tomography (TomoSAR) has been widely used in the three-dimensional (3D) reconstruction of urban areas using the multi-baseline (MB) SAR data. For urban scenarios, the MB SAR data are often acquired by repeat-pass using the spaceborne SAR system. Such a data stack generally has long time baselines, which result in different atmospheric disturbances of the data acquired by different tracks. These factors can lead to the presence of phase errors (PEs). PEs are multiplicative noise for observation data, which can cause diffusion and defocus in TomoSAR imaging and seriously affect the extraction of target 3D information. In this paper, we combine the methods of the block-building network (BBN) and phase gradient autofocus (PGA) to propose a novel phase compensation method called BBN-PGA. The BBN-PGA method can effectively and efficiently compensate for PEs of the MB SAR data over a wide area and improve the accuracy of 3D reconstruction of urban areas. The applicability of this proposed BBN-PGA method is proved by using simulated data and the spaceborne MB SAR data acquired by the TerraSAR-X satellite over an area in Barcelona, Spain.
Read full abstract