Abstract

In forest and agricultural scattering scenarios, the backscattered synthetic aperture radar (SAR) signature consists, depending on the frequency, of the superposition of ground and volume scattering contributions. Using multibaseline SAR data, SAR tomography techniques allow resolving contributions occurring at different heights. Two algorithms for the separation of ground and volume scattering are compared with respect to their ability to provide a coherent volume component that can be further used for parameter inversion, both of them requiring only the a priori known ground topography. Once the volume-only coherences are available, the total ground and volume scattering powers are estimated by means of a least squares fitting. The objective of this letter is to quantitatively evaluate the performance of this estimation by means of a Monte Carlo analysis with simulated data focusing on the impact of vertical resolution, errors in the knowledge of the ground topography and phase calibration residuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.