We present the results from a complex study of an eclipsing O-type binary (Aa+Ab) with the orbital period of P A = 3.2254367 days that forms part of a higher-order multiple system in a configuration of (A+B)+C. We derived masses of the Aa+Ab binary of M 1 = 19.02 ± 0.12 and M 2 = 17.50 ± 0.13 M ⊙, the radii of R 1 = 7.70 ± 0.05 and R 2 = 6.64 ± 0.06 R ⊙, and temperatures of T 1 = 34,250 ± 500 K and T 2 = 33,750 ± 500 K. From the analysis of the radial velocities, we found a spectroscopic orbit of A in the outer A+B system with P A+B = 195.8 days (P A+B/P A ≈ 61). In the O − C analysis, we confirmed this orbit and found another component orbiting the A+B system with P AB+C = 2550 days (P AB+C/P A+B ≈ 13). From the total mass of the inner binary and its outer orbit, we estimated the mass of the third object, M B ≳ 10.7 M ⊙. From the light travel time effect fit to the O − C data, we obtained the limit for the mass of the fourth component, M C ≳ 7.3 M ⊙. These extra components contribute about 20%–30% (increasing with wavelength) to the total system light. From the comparison of model spectra with the multiband photometry, we derived a distance modulus of 18.59 ± 0.06 mag, a reddening of 0.16 ± 0.02 mag, and an RV of 3.2. This work is part of our ongoing project, which aims to calibrate the surface brightness–color relation for early-type stars.
Read full abstract