Materials can be classified as shear or tensile sensitive, depending on the main fatigue microcrack initiation process under multiaxial loadings. The nature of the initiating microcrack can be evaluated from a stress scale factor (SSF), which usually multiplies the hydrostatic or the normal stress term from the adopted multiaxial fatigue damage parameter. Low SSF values are associated with a shear-sensitive material, while a large SSF indicates that a tensile-based multiaxial fatigue damage model should be used instead. For tension-torsion histories, a recent published approach combines the shear and normal stress amplitudes using a SSF polynomial function that depends on the stress amplitude ratio (SAR) between the shear and the normal components. Alternatively, critical-plane models calculate damage on the plane where damage is maximized, adopting a SSF value that is assumed constant for a given material, sometimes varying with the fatigue life (in cycles), but not with the SAR, the stress amplitude level, or the loading path shape. In this work, in-phase proportional tension-torsion tests in 42CrMo4 steel specimens for several values of the SAR are presented. The SSF approach is then compared with critical-plane models, based on their predicted fatigue lives and the observed values for these tension-torsion histories. KEYWORDS. Multiaxial fatigue life prediction; Critical-plane approach; Polynomial stress scale factor approach.