With the rapid growth of the solar photovoltaic (PV) market, many distributed PV power projects are introduced to the market. Selecting a rational project investment portfolio is a complex and challenging task for energy enterprises as both financial and non-financial factors of projects are needed to be considered under limited information and resources. This study presents a two-stage hybrid multi-attribute decision-making and integer programming model for distributed PV project portfolio selection. In Stage I, a multiple attribute group decision-making method based on mathematical programming is used to evaluate the non-financial value of projects under incomplete preference information. Compensative weighted averaging operators with an adjustable parameter are utilized to capture the subjective attitudinal character of an expert in the aggregation process. Then, a rank acceptability index is developed to measure each project’s group support degree in non-financial dimension. In Stage II, a bi-objective integer programming model is constructed to optimize project portfolios, which considers both financial and non-financial values of projects under resource, carbon emission and other strategic constraints. The applicability and effectivity of the proposed approach are demonstrated by a case study of a distributed PV project portfolio selection.
Read full abstract