The block diagonalization (BD) precoding technique is a well-known linear transmit strategy for multiuser multi-input multi-output (MU-MIMO) systems. The MU-MIMO broadcast channel is decomposed into multiple independent parallel single user MIMO (SU-MIMO) channels and achieves the maximum diversity order at high data rates. The lattice reduction-aided decoding (LRAD) features the reduced decoding complexity in MIMO communications. The Lenstra-Lenstra-Lovasz (LLL) algorithm has been extensively used to obtain better bases of the channel matrix while the complex lattice reduction (CLR) is aimed at improving orthogonality of basis vectors and shortening them. The orthogonalization and size reduction work are left for the CLR algorithm so that a modification of the channel matrix is carried out, resulting in better precoding and detection performances. We also derive bounds for lattice decoding. Simulation results show that the bit error rate (BER) performance of our proposed algorithm is better than that of conventional ones and it reduces the complexity compared with the LLL algorithm-based schemes.
Read full abstract