A 3D stationary CFD study was conducted in our previous work, resulting in a novel reactor design methodology oriented to upgrading biogas through CO2 methanation. To enhance our design methodology incorporating relevant power to gas operational conditions, a novel transient 3D CFD modelling methodology is employed to simulate the effect of relevant dynamic disruptions on the behaviour of a tubular fixed bed reactor for biogas upgrading. Unlike 1D/2D models, this contribution implements a full 3D shell cooled methanation reactor considering real-world operational conditions. The reactor’s behaviour was analysed considering the hot-spot temperature and the outlet CH4 mole fraction as the main performance parameters. The reactor start-up and shutdown times were estimated at 330 s and 130 s, respectively. As expected, inlet feed and temperature disruptions prompted “wrong-way” behaviours. A 30 s H2 feed interruption gave rise to a transient low-temperature hot spot, which dissipated after 60 s H2 feed was resumed. A 20 K rise in the inlet temperature (523–543 K) triggered a transient low-temperature hot spot (879 to 850 K). On the contrary, a 20 K inlet temperature drop resulted in a transient high-temperature hot spot (879 to 923 K), which exposed the catalyst to its maximum operational temperature. The maximum idle time, which allowed for a warm start of the reactor, was estimated at three hours in the absence of heat sources. No significant impacts were found on the product gas quality (% CH4) under the considered disruptions. Unlike typical 1D/2D simulation works, a 3D model allowed to identify the relevant design issues like the impact of hot-spot displacement on the reactor cooling efficiency.
Read full abstract