Retinal vasculature is the only vascular system in the human body that can be observed in a non-invasive manner, with a phenotype associated with a wide range of ocular, cerebral, and cardiovascular diseases. OCT and OCT angiography (OCTA) provide powerful imaging methods to visualize the three-dimensional morphological and functional information of the retina. In this study, based on OCT and OCTA multimodal inputs, a multitask convolutional neural network model was built to realize 3D segmentation of retinal blood vessels and disease classification for different retinal diseases, overcoming the limitations of existing methods that can only perform 2D analysis of OCTA. Two hundred thirty sets of OCT and OCTA data from 109 patients, including 138,000 cross-sectional images in normal and diseased eyes (age-related macular degeneration, retinal vein occlusion, and central serous chorioretinopathy), were collected from four commercial OCT systems for model training, validation, and testing. Experimental results verified that the proposed method was able to achieve a DICE coefficient of 0.956 for 3D segmentation of blood vessels and an accuracy of 91.49% for disease classification, and further enabled us to evaluate the 3D reconstruction of retinal vessels, explore the interlayer connections of superficial and deep vasculatures, and reveal the 3D quantitative vessel characteristics in different retinal diseases.