Abstract
Estimating the pose and shape of vehicles from aerial images is an important, yet challenging task. While there are many existing approaches that use stereo images from street-level perspectives to reconstruct objects in 3D, the majority of aerial configurations used for purposes like traffic surveillance are limited to monocular images. Addressing this challenge, a Convolutional Neural Network-based method is presented in this paper, which jointly performs detection, pose, type and 3D shape estimation for vehicles observed in monocular UAV imagery. For this purpose, a robust 3D object model is used following the concept of an Active Shape Model. In addition, different variants of loss functions for learning 3D shape estimation are presented, focusing on the height component, which is particularly challenging to estimate from monocular near-nadir images. We also introduce a UAV-based dataset to evaluate our model in addition to an augmented version of the publicly available Hessigheim benchmark dataset. Our method yields promising results in pose and shape estimation: utilising images with a ground sampling distance (GSD) of 3 cm, it achieves median errors of up to 4 cm in position and 3° in orientation. Additionally, it achieves root mean square (RMS) errors of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pm 6$$\\end{document} cm in planimetry and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pm 18$$\\end{document} cm in height for keypoints defining the car shape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.