In the scenario of power system monitoring, detecting the operating status of circuit breakers is often inaccurate due to variable object scales and background interference. This paper introduces DLCH-YOLO, an object detection algorithm aimed at identifying the operating status of circuit breakers. Firstly, we propose a novel C2f_DLKA module based on Deformable Large Kernel Attention. This module adapts to objects of varying scales within a large receptive field, thereby more effectively extracting multi-scale features. Secondly, we propose a Semantic Screening Feature Pyramid Network designed to fuse multi-scale features. By filtering low-level semantic information, it effectively suppresses background interference to enhance localization accuracy. Finally, the feature extraction network incorporates Generalized-Sparse Convolution, which combines depth-wise separable convolution and channel mixing operations, reducing computational load. The DLCH-YOLO algorithm achieved a 91.8% mAP on our self-built power equipment dataset, representing a 4.7% improvement over the baseline network Yolov8. With its superior detection accuracy and real-time performance, DLCH-YOLO outperforms mainstream detection algorithms. This algorithm provides an efficient and viable solution for circuit breaker status detection.
Read full abstract