Ferritic alloys represent a technologically important class of candidate materials for fusion first wall and blanket structures. A detailed understanding of the mechanisms of defect accumulation and microstructure evolution, and the corresponding effects on mechanical properties is required to predict their in-service structural performance limits. The physical processes involved in radiation damage, and its effects on mechanical properties, are inherently multiscale and hierarchical, spanning length and time scales from the atomic nucleus to meters and picosecond to decades. In this paper, we present a multiscale modeling methodology to describe radiation effects within the fusion energy environment. Selected results from atomic scale investigation are presented, focusing on (i) the mechanisms of self-interstitial dislocation loop formation with Burgers vector of a〈1 0 0〉 in iron relative to vanadium, (ii) helium transport and (iii) the interaction between helium and small self-interstitial clusters in iron, and (iv) dislocation-helium bubble interactions in fcc aluminum.
Read full abstract