Energy-efficient building design is often challenged by multiple optimization problems due to contradictory objectives that are often hard to balance, so an effective optimization method should be thoroughly considered. Accordingly, a multi-objective evolutionary algorithm is then proposed. Firstly, the multi-agent auxiliary objective evolutionary algorithm for building energy efficiency model is established. According to model result analysis, the proposed algorithm runs fastest for 1640s with the average running time of 1710s in a single-room building, comparing to the least running time of 1680s for the multi-objective particle swarm optimization algorithm. In multi-room buildings, the proposed algorithm runs from 3350s to 3650s, with the average running time of 3500s. In conclusion, the model proposed in this study can comprehensively consider multiple objectives such as energy consumption, cost, comfort, etc. No matter in single-room or multi-room buildings, the model demonstrates superior performance and stability to realize comprehensive optimization of energy conservation design.
Read full abstract