Characterization of electromagnetic wave polarization states is critical in various applications of materials, biomedical, and imaging. The emergence of metasurfaces opens up the possibility of implementing highly integrated full-Stokes imagers. Despite rapid development, prevailing schemes on metasurface-based full-Stokes imagers require interleaved or cascaded designs, inevitably resulting in performance deterioration, bulky size, and complicating the imaging procedure due to misalignment. To overcome these challenges, a non-interleaved shared-aperture full-Stokes metalens enabled by the prior-knowledge-driven inverse design methodology is proposed. The metalens can be directly deployed into imagers, performing high-accuracy diffraction-limited full-Stokes imaging without other ancillary components, breaking intrinsic constraints of efficiency and resolution in interleaved design. To demonstrate this, the metalens is integrated into the W-band passive imaging system, as an alternative solution, to perform polarimetric imaging, which reduces the reliance on the high cost and high complexity of the ortho-mode transducer and broadband correlator in traditional polarimetric radiometers. Furthermore, with the assistance of a 3D reconstruction method, the feasibility of multi-polarization information for contactless surface slope measurements is explored. This work may open new paradigms for the full-Stokes imager designing and broaden the applications of metasurface polarimetric imaging.
Read full abstract