AbstractThe hydrodynamic cavitation multiphase reactor (HCMR) is emerging as a promising alternative for the intensification of liquid–liquid heterogeneous reactions, but research on HCMR modeling is lacking. In this article, an HCMR model was developed using Prileschajew epoxidation as the model system. First, based on experimental measurements of oil/water two‐phase flow downstream of hydrodynamic cavitation devices, semiempirical correlations were proposed to describe the droplet size and droplet size distribution (DSD) as functions of flow conditions and geometry parameters. Then, with boundary conditions calculated by the DSD correlation, a droplet dynamics simulation in a reaction tank was performed by computational fluid dynamics coupled with population balance model to obtain the two‐phase interfacial area. Finally, the acquired reactor model was substituted into an overall kinetic model, to simulate the epoxidation reaction in HCMR. Model predictions were verified by experimental results measured on an industrial scale HCMR.