In this paper, a method based on a Multiobjective Multi-Verse Optimizer (MOMVO) is proposed and successfully implemented to solve the unmanned aerial vehicles’ path planning problem. The generation of each coordinate of the aircraft is reformulated as a multiobjective optimization problem under operational constraints. The shortest and smoothest path by avoiding all obstacles and threats is the solution of such a hard optimization problem. A set of competitive metaheuristics such as Multiobjective Salp Swarm Algorithm (MSSA), Grey Wolf Optimizer (MOGWO), Particle Swarm Optimization (MOPSO) and Non-dominated Sorting Genetic Algorithm II (NSGA-II) are retained as comparison tools for the problem’s resolution. To assess the performance of the reported algorithms and conclude about their effectiveness, an empirical study is firstly performed for solving different multiobjective test functions from the literature. These algorithms are then used to obtain a set of optimal Pareto solutions for the multi-criteria path planning problem. An efficient Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) of Multi Criteria Decision-Making (MCDM) model is investigated to find the optimal solution from the non-dominant ones. Demonstrative results and statistical analysis are presented and compared in order to show the effectiveness of the proposed MOMVO-based path planning technique.