In the Internet of Things (IoT) era, wireless sensor networks play a critical role in communication systems. One of the most crucial problems in wireless sensor networks is the sensor deployment problem, which attempts to provide a strategy to place the sensors within the surveillance area so that two fundamental criteria of wireless sensor networks, coverage and connectivity, are guaranteed. In this paper, we look to solve the multi-objective deployment problem so that area coverage is maximized and the number of nodes used is minimized. Since Harmony Search is a simple yet suitable algorithm for our work, we propose Harmony Search algorithm along with various enhancement proposals, including heuristic initialization, random sampling of sensor types, weighted fitness evaluation, and using different components in the fitness function, to provide a solution to the problem of sensor deployment in a heterogeneous wireless sensor network where sensors have different sensing ranges. On top of that, the probabilistic sensing model is used to reflect how the sensors work realistically. We also provide the extension of our solution to 3D areas and propose a realistic 3D dataset to evaluate it. The simulation results show that the proposed algorithms solve the area coverage problem more efficiently than previous algorithms. Our best proposal demonstrates significant improvements in coverage ratio by 10.20% and cost saving by 27.65% compared to the best baseline in a large-scale evaluation.