Abstract

Effectively monitoring maritime environments has become a vital problem in maritime applications. Traditional methods are not only expensive and time consuming but also restricted in both time and space. More recently, the concept of an industrial wireless sensor network (IWSN) has become a promising alternative for monitoring next-generation intelligent maritime grids, because IWSNs are cost-effective and easy to deploy. This paper focuses on solving the issue of 3-D IWSN deployment in a 3-D engine room space of a very large crude-oil carrier and also considers numerous power facilities. To address this 3-D IWSN deployment problem for maritime applications, a 3-D uncertain coverage model is proposed that uses a modified 3-D sensing model and an uncertain fusion operator. The deployment problem is converted into a multiobjective optimization problem that simultaneously addresses three objectives: coverage , lifetime, and reliability . Our goal is to achieve extensive coverage, long network lifetime, and high reliability. We also propose a distributed parallel cooperative coevolutionary multiobjective large-scale evolutionary algorithm for maritime applications. We verify the effectiveness of this algorithm through experiments by comparing it with five state-of-the-art algorithms. Numerical results demonstrate that the proposed method performs most effectively both in optimization performance and in minimizing the computation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.