A quantum analysis of the generalized polarization properties of multimode non-stationary states based on their optical field-strength probability distributions is presented. The quantum generalized polarization is understood as a significant confinement of the probability distribution along certain regions of a multidimensional optical field-strength space. The analysis is addressed to quantum states generated in multimode linear and nonlinear waveguiding (integrated) photonic devices, such as multimode waveguiding directional couplers and waveguiding parametric amplifiers, whose modes fulfill a spatial modal orthogonality. In particular, the generalized polarization degree of coherent, squeezed and Schrödinger’s cat states is analyzed.
Read full abstract