We report a simple approach for the production of copper nanoparticles by a wire explosion process that creates different structures in deionized (DI) water versus isopropyl alcohol (IPA) liquid media. In DI water, copper nanoparticles (CNs) are formed, while multi-layer graphene-synthesized copper nanoparticles (MGCNs) with a high degree of graphitization are formed in the IPA liquid media. The nanoparticles have an average diameter ranging from 10 nm to 300 nm and a quasi-spherical morphology. The morphologies and sizes of nanoparticles formed via this method were characterized by high-resolution transmission electron microscopy (HRTEM), field-emission scattering electron microscopy (FESEM), and analysis of dynamic light scattering (DLS). The microstructures and chemical bonding of the nanoparticles were studied by X-ray diffraction (XRD), Raman spectra measurement, and X-ray photoelectron spectroscopy (XPS). This results show an easily reproducible way to synthesize metal-core nanoparticles with multi-layer graphene shells based onto the liquid media used during synthesis. These materials can be used in the field of energy storage and as additives in the near future.
Read full abstract