This study presents a comprehensive investigation of the static analysis of a shear-deformable aircraft wing made of functionally graded materials (FGMs). A finite element-based multilayered FGM model is employed for this purpose. In order to ensure the safe structural design of the aircraft wing, it is crucial to analyze the transverse displacement of the wing under various loading conditions. The presented model employs a power-law distribution based on the rule of mixture to derive the effective material properties of the FGM wing. The analysis focuses on three standard FGM aircraft wing profiles, namely NACA 0009, NACA 2424, and NACA 4415, which are representative of commonly used geometries in aircraft design. Additionally, the study explores the effects of volume fraction index, loading conditions, boundary conditions, and aspect ratio on the static analysis of the shear-deformable FGM aircraft wing. These parameters play a significant role in shaping the static behavior of the wings and offer valuable insights into the design of FGM aircraft wings.